MMAT 5010 Linear Analysis (2023-24): Homework 7 Deadline: 23 Mar 2024

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

- 1. Let $X := \mathbb{R}^N$ be the *N*-dimensional real vector space with the usual norm, that is, $||x|| := \sqrt{x_1^2 + \cdots + x_N^2}$ for $x = (x_1, \dots, x_N)$. For each $x, y \in \mathbb{R}^N$, put $T(x)(y) := \sum_{k=1}^N x(k)y(k)$. Show that *T* is an isometric isomorphism from \mathbb{R}^N onto its dual space.
- 2. Let X be a normed space and let $0 \neq x_0 \in X$. Show that there is $f \in X^*$ such that $f(x_0) = 1$ and $||f|| = 1/||x_0||$.

* * * End * * *